Aerospace Research Laboratories ## AN ELECTRON BEAM DEVICE FOR REAL GAS FLOW DIAGNOSTICS S. L. PETRIE THE OHIO STATE UNIVERSITY COLUMBUS, OHIO CLEARINGHOUSE FOR FEDERAL SCIENTIFIC AND TECHNICAL INFORMATION - Hardcopy Microfichs \$ 3.00 \$ 0.50 \$ 6 \text{FP} & \$ \text{COPY} HOIA B OFFICE OF AEROSPACE RESEARCH United States Air Force #### **NOTICES** | When Government drawings, specifications, or other data are used for any purpose other than in | |--| | connection with a definitely related Government procurement operation, the United States Government | | thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may | | have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto. | | | Qualified requesters may obtain copies of this report from the Defense Documentation Center, (DDC), Cameron Station, Alexandria, Virginia. This report has been released to the Office of Technical Services, U. S. Department of Commerce, Washington 25, D. C. for sale to the general public. Copies of ARL Technical Documentary Reports should not be returned to Aerospace Research Laboratories unless return is required by security considerations, contractual obligations or notices on a specified document. 400 - September 1965 - AF33(615)773-5-91 # AN ELECTRON BEAM DEVICE FOR REAL GAS FLOW DIAGNOSTICS S. L. PETRIE AERODYNAMIC LABORATORY THE OHIO STATE UNIVERSITY COLUMBUS, OHIO JUNE 1965 Contract AF 33(657)-11060 Project 7065 AEROSPACE RESEARCH LABORATORIES OFFICE OF AEROSPACE RESEARCH UNITED STATES AIR FORCE WRIGHT-PATTERSON AIR FORCE BASE, OHIO #### FOREWORD This technical report was prepared by S. L. Petrie of the Aerodynamic Laboratory, The Ohio State University, Columbus, Ohio, on Contract AF 33(657)-11060 for the Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force. The work reported herein was accomplished on Project 7065, "Aerospace Simulation Techniques Research." Mr. Emil Walk of the Fluid Dynamics Facilities Laboratory, ARL, served as the technical monitor. This report has been reviewed and is approved. #### ABSTRACT An electron beam device suitable for use in low density, non-radiating flows is described. It is shown that in certain ranges of gas density the electron beam can be employed to determine the rotational temperature, vibrational temperature and concentration of molecular nitrogen in a high speed air flow. The theoretical analysis required for interpretation of the data obtained with an electron beam is presented and examples of application of the technique are given. Certain design criteria for electron beam generators are discussed. #### TABLE OF CONTENTS | Section | | Page | |---------|---|------| | I | INTRODUCTION | 1 | | II | THE ELECTRON BEAM GENERATOR | 2 | | III | INTERPRETATION OF BEAM-INDUCED EMISSION | 4 | | | A. General Considerations | 4 | | | B. Excitation-Emission Process | 6 | | | C. Rotational Temperature | 7 | | | D. Vibrational Temperature | 10 | | | E. Number Density | 11. | | IV | EXPERIMENTAL PROCEDURES | 13 | | | A. Rotational Temperature | 13 | | | B. Vibrational Temperature | 15 | | | C. Number Density | 17 | | V | SUMMARY AND CONCLUSION | 18 | | | REFERENCES | 20 | #### LIST OF ILLUSTRATIONS | Figure | | Page | |--------|---|------------------| | 1 | Electron Beam Schematic | 24 | | 2 | Floctron Beam Vacuum System Performance | 25 | | 3 | Electron Gun Schematic | 26 | | 4 | Gun Mount Details | 27 | | 5 | Electron Beam Generators | 28 | | 6 | Beam-Wind Tunnel Assembly | 29 | | 7 | Partial Energy Level Diagram for N2 and N2+ | 30 | | 8 | Iso-Intensity Plot for (0,0) Band of ${\rm N_2}^+$ First Negative Emission; ${\rm T_R}$ vs. ${\rm K_2}$ | 31 | | 9 | Iso-Intensity Plot for (0,0) Band of ${\rm N_2}^+$ First Negative Emission; ${\rm T_R}$ vs. ${\rm K_1}$ | 32 | | 10 | Band Intensity Ratios for N_2^+ First Negative Emission System | 33 | | 1.1 | ${\rm N_2}^+$ (0,2) Band Intensity Slope Ratio as a Function of Vibrational Temperature | 3 ¹ 4 | | 12 | <pre>K* = 11 Line Intensity Slope Ratio as a Function of
Rotational Temperature</pre> | 35 | | 13 | Typical Spectrogram from 3-meter Grating Spectrograph | 36 | | 14 | Densitometer Recording for N2+ (0,0) Band | 37 | | 15 | Typical Emulsion Calibration Curve | 38 | | 16 | Line-Slope Plot for N2+ (0,0) Band | 3 9 | | 17 | Typical Spectrogram from f/5 Prism Spectrograph | 40 | | 18 | Densitometer Trace of N2+ (0,2) Band | 41 | | 19 | $K^{\dagger} = 11$ Line Intensity in N_2^{\dagger} (0,0) Band | 115 | | 20 | N_2^+ (0,0) Band Intensity Determined with a Photomultiplier | 43 | | 21 | N_2^+ (0,2) and N_2^+ (1,2) Band Intensities Determined with f,5 Prism Spectrograph | 1+74 | #### LIST OF TABLES | | | D | |-------|---|------| | Table | . | Page | | 1 | Typical Line Intensities for N2+ (0,0) Band | 14 | | 2 | N_2 Vibrational Temperature Determined with an Electron Beam | 16 | | 3 | Values of $Log_{10}[(G)v^4/v_0^4]$ for Various Rotational Temperatures | 21 | | 4 | N2+ First Negative Bands | 21 | | 5 | Relative Transition Probabilities $p(v^*, v^*) = R_e^2 q(v^*, v^*)$ for Transitions $N_2^+ B^2 \Sigma \rightarrow N_2^+ X^2 \Sigma$ | 22 | | 6 | Franck-Condon Factors for Transition $N_2^{\dagger}B^2\Sigma \rightarrow N_2^{\dagger}X^2\Sigma$ | 22 | | . 7 | Franck-Condon Factors for Transition $N_2X^1\Sigma \rightarrow N_2^+B^2\Sigma$ | 22 | | 8 | Relative Populations of N ₂ Vibrational Energy Levels, $e^{-G_O(v_O)hc/kTV}$ | 23 | #### LIST OF SYMBOLS | а | Rate of photon emis ion | |-------------------------|--| | С | Speed of light | | Cı | Intensity constant, Eq. (8) | | C2 | Intensity constant, Eq. (12) | | е | Electron | | f | Intensity function, Eq. (13) | | G | Vibrational term value | | G _O | Relative vibrational term value | | (G) | Rotational temperature function, Eq. (4) | | Н | Line intensity function, Eq. (2) | | h | Planck's constant | | I | Intensity | | Io | Intensity constant, Eq. (4) | | I ^O ; | Intensity constant, Eq. (3) | | K | Rotational quantum number | | k | Boltzmann's constant | | NN2 | N ₂ number density | | $N_2X^1\Sigma$ | Ground electronic energy level of N2 | | $N_2 + X_5 \Sigma$ | Ground electronic energy level of N2+ | | $N_2^+B^2\Sigma$ | Excited electronic energy level of N2+ | | p(v',vo) | Vibrational transition probability for $N_2 \tilde{L}^1 \Sigma \rightarrow N_2 \tilde{L}^2 \Sigma$ | | p(v*,v**) | Vibrational transition probability for $N_2^+B^2\Sigma \to N_2^+X^2\Sigma$ | | P(K',K") | Rotational transition probability for $N_2^+B^2\Sigma \to N_2^+X^2\Sigma$ | | $q(v^{\dagger}, v_{O})$ | Franck-Condon Factor for $N_2X^1\Sigma \rightarrow N_2^+B^2\Sigma$ | | | | ## LIST OF SYMBOLS (Continued) | | q(v*,v") | Franck-Condon Factor for $N_2^+B^2\Sigma \rightarrow N_2^+X^2\Sigma$ | |---|----------|--| | | Q | Partition function (state sum) | | | R | Rotational slope function | | | S | Vibrational slope function | | | T | Temperature | | ٠ | v | Vibrational quantum number | | | θ | Characteristic rotational temperature (2.891°K for N ₂) | | | ν | Wave number | | | v_{o} | Reference wave number | | | | | ## Subscripts | С | Calibration conditions | |-----------------|---| | N2 ⁺ | Conditions for N_2^+ first negative emission system | | 0 | Conditions in N2 ground electronic state | | R,ROT | Conditions for rotational energy mode | | V.VIB | Conditions for vibrational energy mode | ## Superscripts - t Conditions in $N_2^{\dagger}B^2\Sigma$ state - " Conditions in $N_2^{\dagger}X^2\Sigma$ state #### I. INTRODUCTION Laboratory simulation of flow fields with wind tunnels long has been an established technique. New facilities continually have been developed to extend the speed and altitude ranges which can be simulated. Although the technology of facility design has advanced at a rapid rate, there has been a sizeable lag in the development of adequate flow calibration devices. The diagnostic procedures for advanced test devices are complicated by the presence of non-equilibrium effects in the effluent. For example, in a high enthalpy wind tunnel, dissociation and ionization of the gas occur, and as the gas expands through the nozzle, chemical recombination and thermodynamic relaxation take place. Since recombination and relaxation are rate processes, they are coupled strongly to the gasdynamic features of the flow. Thus, there is a direct relationship between the local flow velocity and the degrees of recombination and relaxation with the possible existence of non-equilibrium effects. Similarly, in very low density facilities, non-equilibrium in the thermodynamic relaxation processes may occur and viscous effects can become predominant. Non-equilibrium behavior and viscous effects both destroy the simple relationships used to interpret conventional calibration data and necessitate a much
larger number of independent measurements to determine the state of the effluent. The calibration items of interest for a test facility can be grouped into three main categories: (1) those associated with the gasdynamic state, (2) those describing the chemical nature of the effluent, and (3) the variables specifying the local thermodynamic state. Various types of probes have been proposed for determining certain features of the flow. However, to obtain a direct measurement of the detailed chemical composition and/or the thermodynamic state of the effluent, spectroscopic methods generally must be applied. Although tedious, spectroscopic techniques are particularly attractive since they can be employed without causing any disturbance in the gas during the time of measurement. Both emission and absorption spectroscopy can be considered for application. However, in highly expanded flows, the gas temperatures and pressures generally are so low (even in arc-heated wind tunnels) that the gas does not emit nor absorb a sufficient amount of radiation for quantitative measurements. In some instances, non-thermal excitation of the gas may be present allowing the application of conventional spectrographic techniques, but usually this is not the case. Hence, to allow the application of spectroscopic techniques to highly expanded non-radiating flows, various methods for causing the test gas to emit radiation were examined. It would be possible to excite the gas with alpha particles, beta particles, or x-rays. However, the difficulties with obtaining well Manuscript released by the author 3 June 1965 for publication as an ARL Technical Report. collimated beams, the requirements for adequate shielding from the x-rays, and the resultant contamination of the test facility associated with these techniques make them undesirable. Previous theoretical and experimental studies by Gadamer² and Muntz³ directed towards the measurement of gas properties with an electron beam in low density, non-radiating flows were encouraging. In this technique, a narrow beam of electrons is projected across the flow and the interaction of the electrons with the gas particles produces a column of radiating gas coincident with the beam. Spectroscopic analysis of the radiation yields a direct measurement of the rotational and vibrational temperatures and concentrations of the active species at arbitrary locations within the test gas. Analysis of the spectrum induced by an electron beam passing through nitrogen has been given by Muntz.³ The applicability of the technique in high speed flows of arc-heated air has been demonstrated by Petrie, Pierce and Fishburne.⁴ In Ref. 4, data from the electron beam were compared with conventional calibration data and various theoretical predictions to deduce the thermo-chemical properties of the effluent generated by an archeated wind tunnel. The electron beam has proven to be an extremely useful diagnostic device. It can be applied to any low density flow to give a direct measurement of temperature and species concentration without altering the basic energy content of the medium under investigation. The purpose of this report is to summarize the theoretical information required to interpret the spectral data obtained with an electron beam and to present the pertinent design criterion for a suitable electron beam generator. Detailed descriptions of the application of the beam technique in wind tunnel diagnostics may be found in Ref. 4. #### II. THE ELECTRON BEAM GENERATOR The studies reported in Refs. 2 and 3 indicate that sufficient radiation can be obtained from an electron beam passing through nitrogen with beam currents in the range of 10 to 200 microamperes and beam voltages from 10 to 20 kilovolts. The high voltage is utilized to reduce spreading of the beam due to elastic collisions between beam electrons and gas particles. The beam is projected completely across the test flow as shown in Fig. 1 and profiles of gas properties can be obtained by examining various points along the length of the beam. Because of the high speed of the electrons within the beam, a gas flow has little effect on the beam shape or its path through the flow. A narrow beam (1 mm diameter) is employed to obtain good spatial resolution. An electron beam with the desired current and voltage can be obtained from electron guns used in commercial television picture tubes. These TV guns are attractive because they are readily available at low cost (\$2.00 each). However, commercially available electron guns usually have oxide-coated cathodes which easily become contaminated if operated at pressures much above 10⁻⁴ mm Hg. Hence, to project an electron beam across a flow with a static pressure above 10⁻⁴ mm Hg, an orifice through which the accelerated electrons can pass freely into the test region must separate the electron gun from the test gas and a dynamic pumping system must be employed to maintain the gun at a pressure below 10⁻⁴ mm Hg. The electron beam system described here was designed to operate with static pressures (at room temperature) up to 500 μ Hg. The beam vacuum system consists of a six-inch, four-stage oil diffusion pump with an unbaffled pumping speed of 1520 liters/second at pressures from 3 x 10^8 to 5 x 10^3 mm Hg. A water-cooled baffle is employed between the gun chamber and the oil diffusion pump to reduce "backstreaming" of the pump vapors into the gun chamber. The performance of the vacuum system is shown graphically in Fig. 2 where it can be seen that the gun chamber pressure is maintained at the desired level with external pressures up to 500 μ Hg. Electron gun types 19BWP4 and 21CPB4 have been employed with the 19BWP4 displaying the longer lifetime. The 19BWP4 gun is a 1140 magnetic deflection, electrostatic focus type with an ultor voltage range from 12 to 23.5 kv and a rated cathode heater voltage of 6.3 volts. Voltages are supplied to the gun by a standard high voltage power supply with an adjustable output up to 30 kv at a maximum current of three milliamperes. The heater, cathode, and grids are placed at high negative voltages with respect to ground potential. Variable grid voltages are obtained by leaking current to ground through adjustable resistors and milliampemeters are used in all grid circuits to monitor the gun performance. Cathode heater currents are supplied by a high voltage transformer and normal operation of a gun usually requires heater currents as much as 50% above the rated current of 450 milliamperes. The net beam current passing through the test gas is measured with a microampmeter. A schematic diagram of the electrical system is given in Fig. 3. Other investigators^{3,5} experienced difficulties in operating guns with oxide-coated cathodes in continuously pumped vacuum systems. These difficulties were caused principally by decomposition of silicone vapor from the oil diffusion pump on the cathode surface causing erratic variations of the beam current. With Consolidated Vacuum C rporation Convoil 20 pump fluid, no difficulties with cathode contamination have been experienced with the gun system described here. A rather marked degradation in our performance has been noticed each time the pressure in the gun chamber is brought to atmospheric pressure. After each exposure to atmospheric pressure, an increase in the cathode heater current is required to obtain a given value of the cathode current. Much more satisfactory performance and longer gun life could be obtained by continually maintaining the gun at a low pressure. The electron guns are mounted in a pyrex tube which is held in place in the gun chamber by a ball-and-socket arrangement shown in Fig. 4. The ball-and-socket allows mechanical alignment of the gun axis with the exit orifice. To obtain precise alignment of the gun, and, hence, maximum beam current, a small permanent magnet (300 gauss) with a movable polepiece is placed around the electron gun in the region of the gun cathode. After initially positioning the gun with the ball-and-socket, final alignment of the beam can be accomplished simply by moving the magnet pole-piece. The electron beam is extremely sensitive to changes in the ambient magnetic field strength. In applications of the beam in arc-heated wind tunnels, the magnetic fields generated by the arc-heater have been found of sufficient strength to substantially alter the position of the beam. Any small deflection of the beam upstream of the exit orifice will result in a large reduction of the beam current passing through the test flow. To eliminate this deflection, it is advisable that shielding be employed in the gun chamber. Further, a second permanent magnet can be employed near the exit orifice so that minor changes in the ambient field strength result in extremely small percentage changes in the field acting on the beam. Additional benefits can be obtained with this orifice magnet. The converging magnetic field near the orifice refocusses the beam and allows much higher currents to be projected through the orifice and across the flow. The two magnets are shown in the schematic diagram of Fig. 1. Photographs of two electron beam systems are given in Fig. 5. Beam systems connected to test facilities are shown in Fig. 6. The mechanical configuration for the beam generators shown here was chosen so that the generators could be moved easily from one test facility to another. More compact designs could be employed if this type of flexibility is not required. #### III. INTERPRETATION OF BEAM-INDUCED EMISSION #### A. GENERAL CONSIDERATIONS The validity of the measurements obtained with an electron beam depends upon a thorough understanding of the excitation-emission processes which occur within the beam. This must include a consideration of the effects of the beam on the basic energy content of the gas. It is shown that in certain ranges of gas density, the vibrational and rotational fine structures of the emitted
radiation may be used to determine the vibrational and rotational temperatures of the active molecules and that the intensity of the radiation may be related directly to the density of the radiating species. When a beam of high energy electrons passes through a gas, the electrons collide with gas particles. The collisions may be elastic or inelastic, depending upon the total kinetic energy of the interacting pair after the collision. The elastic collisions contribute primarily to the spreading of the beam while the inelastic collisions result in radiation by the excited particles. During an elastic collision, the total kinetic energy of the interacting particles is conserved. The electrons are scattered by the heavy gas particles and a portion of the electronic energy may be transferred to the gas particles causing an increase in the static temperature of the gas. In an inelastic collision, the high speed electron imparts a certain portion of its kinetic energy to the internal energy of the heavy particle. This energy appears principally as electronic excitation of the heavy gas particles. After electronic excitation, the excited particle may emit radiation during a spontaneous transition to its ground electronic state, or it may collide with another particle during the lifetime of the excited state, giving up the excess energy to the kinetic energy of the interacting pair. The latter process is called collision quenching. The emission of light due to a spontaneous transition does not contribute to the general energy level of the gas but passes out of the system with little attenuation. It is precisely this radiation which is analyzed to determine the properties of the test gas. Only in the special case that the radiation results from a resonant transition could selfabsorption by the gas present difficulties in interpretation of the radiation. In addition to these direct modes of transfer of electron beam energy, other processes can be important. When a particle is struck by a beam electron, ionization of the particle may occur so that the radiative transition actually connects an excited state of the ion with the ion's ground electronic state (see Section III-B). Such is true for nitrogen. In this case, the radiative transitions leave the ions in their ground electronic state and recombination of the ions with electrons can occur in the body of the cas. Each recombination can contribute energy equal to the ionization potential of the particle to the kinetic energy of the gas. In addition, secondary electrons freed by ionization of the particle can add energy to the gas by elastic collisions or may electronically excite other gas particles. The presence of ions as well as particles in metastable electronic energy states can lead to "afterglow" in a flowing gas, which could be particularly bothersome if the total radiated light were employed for denisty measurements. It should be evident from the above discussions that certain limits on the range of gas density exist for applicability of the electron beam technique. At very low densities, there are an insufficient number of gas particles to be excited by the beam so that little radiation is observed. The admissible minimum density purely is a function of the sensitivity of the detecting equipment. At very high densities, the collision frequencies between electrons and gas particles as well as between gas particles increases to a point where two phenomena may occur. First, the number of elastic collisions which the electrons experience may increase so that there is a large amount of scattering of the beam electrons with attendant losses in spatial resolution and intensity. Second, the number of collisions between electronically excited and unexcited particles can increase so that collision quenching becomes important. As discussed in the following section, the theoretical interpretation of the beam-induced radiation is developed with the assumption that there is no collision quenching. Hence, the analysis employed to obtain temperatures and particle densities may be invalidated at high densities. In addition to the limits on gas density, certain bounds must be placed upon the value of the beam voltage employed. If very high voltages are used, the collision cross-section of beam electrons with gas particles decreases to a point where little excitation may result, and, hence, the radiation intensity may be reduced to an unacceptable low value. With very low beam voltages, the electron collision cross section may become so large that the elastic scattering of the electrons becomes a problem. The complexity of the many processes which occur during excitation of a gas by an electron beam make an accurate theoretical analysis of the over-all energy addition process difficult. In Ref. 4, the results of detailed experimental studies aimed at determining the amount of energy added to air by an electron beam are reported. It is shown that no measurable increase of the gas temperature occurs for air densities up to that corresponding to a pressure of 400 μ Hg at room temperature with beam voltages from 10 to 20 kilovolts. The pressure of 400 μ Hg was the maximum value which could be examined in Ref. 4 and should not be taken as the maximum permissible value for application of the technique. The reader is referred to Ref. 4 for further details. #### B. EXCITATION-EMISSION PROCESS When the electron beam is passed through air, the predominant radiation observed is due to the first negative emission system of the ionized nitrogen molecule (N_2^+) and the first and second positive systems of the unionized nitrogen molecule (N_2) . Except for the very intense (0,0) band of the N_2^+ radiation at 391^{l_1} Å, the first negative and second positive bands appear with nearly equal intensities and the first positive system appears only weakly. Spectra from other species present in heated air (N_0, O_2, O) and from A, H_e , and CO_2 have been observed but with intensities much less than that of the (0,0) band of N_2^+ radiation. In the following, reference is made only to the properties of diatomic nitrogen. Since detailed analyses of the excitation-emission process are given in Refs. 3 and 4, only a summary of the theory will be given here. The electronic transition comprising the N_2^+ first negative emission system is denoted by $N_2^+B^2\Sigma \to N_2^+X^2\Sigma$. The transitions giving rise to the observed radiation are shown in the energy level diagram of Fig. 7. The emission is excited by collisions between electrons and nitrogen molecules in the ground state $(N_2X^1\Sigma)$. The excitation transition is denoted by $N_2X^1\Sigma \to N_2^+B^2\Sigma$ and is shown in Fig. 7. This excitation-emission process can be represented symbolically as $$N_2X^1\Sigma + e \rightarrow N_2^+B^2\Sigma + 2e$$ $$\downarrow N_2^+X^2\Sigma + h\nu$$ The analyses of Refs. 3 and 4 substantiate the assumed excitation process so that other possible ways by which the $N_2^+B^2\Sigma$ state can be populated may be ignored. Also note that collision quenching of the $N_2^+B^2\Sigma$ state is neglected. In specifying a detailed model for the excitation-emission process, several simplifying assumptions are employed. It is assumed that the population in the No ground state can be represented by effective rotational and vibrational temperatures. That is, Boltzmann population distributions are assumed. It is not necessary that the rotational and vibrational temperatures be equal. In fact, arbitrary population distributions may be assumed for each mode so long as some expression for the population in the N2 ground state is available. The transition probabilities describing the excitation and radiative transitions between vibrational energy levels &. assumed to be given in terms of the Franck-Condon factors (or the squares of the overlap integrals). Since the excitation is due to high speed electrons, the duration of time for the excitation should be small so that the relative positons of the nuclei is the No molecule should not change during excitation. This is the condition which must be fulfilled for applicability of the Franck-Condon principle. The radiative transition is a spontaneous emission process and the Franck-Condon principle should apply directly. The probabilities for transitions between the rotational energy levels are assumed equal to the corresponding values for usual optical transitions. #### C. ROTATIONAL TEMPERATURE The intensity of a particular rotational line in the emission is given by the product of the rate of photon emission and the energy of the photon. Hence, $$(I_{K^{\dagger},K''})_{v^{\dagger},v''} = (a_{K^{\dagger},K''})_{v^{\dagger},v''}^{\text{hc}}(v_{K^{\dagger},K''})_{v^{\dagger},v''}^{\text{t}}$$ (1) where $(\mathbf{I}_{K^{\dag},K^{\dag}})_{\mathbf{v}^{\dag},\mathbf{v}^{\dag}}$ is the intensity of the rotational line arising from the transition from the K' rotational level within the v' vibrational level in the $N_2^+B^2\Sigma$ state to the K" rotational level within the v" vibrational level in the $N_2^+X^2\Sigma$ state, $(a_{K^{\dagger},K^{\dagger\prime}})_{V^{\dagger},V^{\dagger\prime}}$ is the rate of photon emission for the transition, and $(v_{K^{\dagger},K^{\prime\prime}})_{V^{\dagger},V^{\prime\prime}}$ is the wave number (inverse wavelength) of the transition. The expression for the rate of photon emission is obtained from the detailed analysis of the excitation-emission process with the assumptions discussed above. The final result for the line intensity is $$(I_{K^{\dagger},K^{"}})_{V^{\dagger},V^{"}} \alpha (v_{K^{\dagger},K^{"}})_{V^{\dagger},V^{"}}^{4} \frac{N_{N_{2}}}{Q_{VIB}} q(v^{\dagger},v^{"})P(K^{\dagger}K^{"})$$ $$\times \sum_{V_{O}} q(v^{\dagger},v_{O}) \frac{H(v_{O},K^{\dagger},T_{R})}{Q_{ROT}} e^{-G(v_{O})hc/kT_{V}}$$ (2) where N_{N_2} is the number density of nitrogen molecules in the N_2 ground electronic energy state,
Q_{VIB} and Q_{ROI} are vibrational and rotational partition functions, $q(v^*,v^*)$ and $q(v^*,v_0)$ are the Franck-Condon factors for the emission and excitation, respectively, $P(K^*,K^*)$ is the rotational transition probability for the emission, $G(v_0)$ is the term value for the v_0 vibrational level, T_R and T_V are the rotational and vibrational temperatures, and $H(v_0,K^*,T_R)$ is a known function of the indicated variables. In the observed emission, the rotational lines for which v'=v"=0 (the 0,0 band) are much more intense than the lines of other bands. In the (0,0) band, two branches of lines appear. The P-branch lines are very close together and form the band head while the R-branch lines are farther apart and can be separated by a spectrograph with moderate dispersion. When equation (2) is written for the R-branch lines and the dependency of the rotational energy on the vibrational quantum number is ignored, the intensity of a particular R-branch line is⁴ $$\frac{I_{K^*,K''}/I_{O^*}}{K^*(G)v^4_{K^*,K''}/v_{O}^4} = \frac{N_{N_2}}{Q_{VIB}} \left[\sum_{V_O} q(O,V_O)e^{-G(V_O)hc/kT_V} \right] \frac{e^{-K^*(K^*+1)\theta/T_R}}{Q_{ROT}}$$ (3) where I_0^* is a constant, v_0 is a reference wave number, $\theta = 2.891^{\circ}K$, and (G) is given as (G) = $$\frac{1}{2K^{4}+1} \left[(K^{4}+1)e^{-2(K^{4}+1)\theta/T_{R}} + K^{4}e^{+2K^{4}\theta/T_{R}} \right]$$ For given vibrational and rotational temperatures, the factors multiplying the exponential are constants independent of K^{\bullet} . Hence, equation (3) can be written as $$\frac{I_{K^*,K''}/I_{O}}{K^*(G)\nu^4_{K^*,K''}/\nu_{O}^4} = e^{-K^*(K^*+1)\theta/T_{R}}$$ (4) The rotational temperature of the nitrogen molecules in the N₂ ground electronic state can be determined by measuring the relative intensities of the rotational lines in the R-branch and plotting $\ln[(I_{K^{\ddagger},K^{\ddagger}}/I_{O})/K^{\ddagger}(G)\nu_{K^{\ddagger},K^{\ddagger}}/\nu_{O})^{4}]$ against $K^{\ddagger}(K^{\ddagger}+1)$. This plot will produce a straight line with a slope of $-\theta/T_{R}$. Since (G) is a function of both K^{\ddagger} and T_{R} , an iterative procedure of solution is required. A value of T_{R} is assumed and the graph is plotted giving a new value of T_{R} and the iteration is repeated. The values of $\log[(G)\nu_{K^{\ddagger}},K^{\ddagger}/\nu_{O}]$ are given in Table 3 where it is seen that the variation of $\log[(G)\nu_{K^{\ddagger}},K^{\ddagger}/\nu_{O}]$ with T_{R} is slow so that the iteration converges rapidly. A sample calculation of T_{R} by this method is given in Section IV. An iso-intensity method of rotational temperature determination can be applied with the intensity expression given by equation (4). Let K_1^* and K_2^* be the rotational quantum numbers in the $N_2^+B^2\Sigma$ state for two lines which have the same intensity. Then the rotational temperature is obtained from equation (4) as $$T_{R} = \frac{K_{2}^{\dagger}(K_{2}^{\dagger}+1) - K_{1}^{\dagger}(K_{1}^{\dagger}+1)}{\ln[K_{2}^{\dagger}(G)_{2}v_{2}^{4}/v_{0}^{4}] - \ln[K_{1}^{\dagger}(G)_{1}v_{1}^{4}/v_{0}^{4}]} \theta$$ (5) The need for an iterative solution for the rotational temperature now can be eliminated by referring to the plots shown in Figs. 8 and 9. The rotational temperature can be determined by measuring the relative intensities of the rotational lines and finding the values of $K^{\bullet}(K_1^{\bullet})$ and K_2^{\bullet}) which correspond to lines of equal intensity. The temperature then is obtained directly from Figs. 8 and 9. However, care must be exercised when the iso-intensity method is applied. At high rotational temperatures (greater than $800^{\circ}K$), lines from the P-branch in the (0,0) band interfere with the first few lines in the R-branch. These R-branch lines appear with intensities which are too high and errors in the temperature result. The iso-intensity method is convenient for "quick" answers since no calibration of the detecting equipment (particularly photographic plates) is required; however, greatest accuracy is obtained by plotting the intensity function against $K^{\bullet}(K^{\bullet}+1)$. It is important to realize that the relational temperature determined with the above techniques is that of the unionized nitrogen molecules in the ground electronic state-that is, the temperature of the molecules before excitation by the electron beam. Since the rotational energy mode requires only a few inter-molecular collisions (approximately 10) to become equilibrated with the translational energy mode, the rotational and static temperatures of the gas should be equal in most cases of interest. However, the possibility of rotational non-equilibrium should be ascertained in any application of the electron beam technique. #### D. VIBRATIONAL TEMPERATURE The intensity of a particular band in the N_2 ⁺ emission is derived in the same manner as discussed in the previous section. Obviously, the rotational structure of the band is not considered. The result is⁴ $$I_{v^{\dagger},v^{"}} \propto \frac{N_{N_{2}}}{Q_{VIB}} v^{4}_{v^{\dagger},v^{"}} q(v^{\dagger},v^{"}) \sum_{V_{O}} q(v^{\dagger},v_{O}) e^{-G_{O}(v_{O})hc/kTV}$$ (6) The vibrational temperature is determined from equation (6) by expressing the ratio of intensities of two bands in the form $$\frac{I_{v_1^{\dagger}, v_1^{"}}}{I_{v_2^{\dagger}, v_2^{"}}} = \left(\frac{v_{v_1^{\dagger}, v_1^{"}}}{v_{v_2^{\dagger}, v_2^{"}}}\right)^4 \frac{q(v_1^{\dagger}, v_1^{"})}{q(v_2^{\dagger}, v_2^{"})} \frac{\sum_{v_0} q(v_1^{\dagger}, v_0) e^{-G_0(v_0)hc/kT_V}}{\sum_{v_0} q(v_2^{\dagger}, v_0) e^{-G_0(v_0)hc/kT_V}}$$ (7) When the electron beam is passed through air, the (0,2), (1,3), (2,1), (0,1), (1,2) and (2,3) bands are suitable for vibrational temperature determinations. The wavelengths of these bands are given in Table 4. The (0,0) band at 3914 Å usually is too intense for quantitative purpose when the sensitivity of the detection system is adjusted to give reasonable values for the other band intensities. The bands in the (1,0) progression rear 3580 Å are overlapped by the (0,1) band of the N_2 second positive emission system. From equation (7), the ratio of intensities of two bands in the emission is a function only of the vibrational temperature of the N_2 molecules in the ground electronic state $(N_2X^1\Sigma)$. The ratios of intensities for various band combinations are shown as a function of N_2 vibrational temperature in Fig. 10 where it is seen that reasonable sensitivity is obtained for temperatures from $1000^{\rm O}K$ to $3000^{\rm O}K$. Thus, the vibrational temperature of the N_2 molecules may be determined by measuring the intensities of the bands in the emission and consulting the curves of Fig. 10. To allow computations of band intensity ratios of interest not given in Fig. 10, the Franck-Condon factors, $q(v^i,v^u)$ and $q(v^i,v_0)$ are given in Tables 5, 6 and 7 and the Boltzmann factor, $e^{-G_0(v_0)hc/kTV}$, is given in Table 8 as a function of the vibrational quantum number and vibrational temperature. As example of vibrational temperature determination is given in Section IV. #### E. NUMBER DENSITY Various methods exist for the measurement of the number density of nitrogen with an electron beam. Any of the following means may be employed: - (1) measurement of the intensity of a particular rotational line in a vibration-rotation band, - (2) measurement of the intensity of a band, or - (3) measurement of the total radiation intensity. In certain cases, one method is more advisable than others. The intensity of a given rotational line in the N_2 ⁺ emission is given by equation (2). For a particular line, the transition probabilities and the wave number of the line are independent of the number density, vibrational temperature, and rotational temperature. With this in mind, equation (2) is re-written as⁴ $$I_{K^{*},K^{"}} = C_{1} \left[\sum_{V_{O}} \frac{q(v^{*},v_{O})}{Q_{VIB}} e^{-G_{O}(v_{O})hc/kT_{V}} \right] \left[\frac{K^{*}+1}{Q_{ROT}} e^{-(K^{*}+1)(K^{*}+2)\theta/T_{R}} + \frac{K^{"}}{Q_{ROT}} e^{-K^{*}(K^{*}-1)\theta/T_{R}} \right] N_{N_{2}}$$ (8) where C_1 includes the transition probabilities and constant of proportionality in equation (2) and $H(v_0,K^{\sharp},T_R)$ has been written in explicit form ignoring the effect of vibration on the rotational energy mode. Equation (8) shows that the intensity of a given line varies linearly with the N_2 number density with a slope dependent upon both the rotational and vibrational temperatures. Equation (8) is re-written in a more convenient form by defining the quantities $S(T_V)$ and $R(T_R)$ as $$S(T_V) = \sum_{v_O} \frac{q(v^*, v_O)}{Q_{VIB}} e^{-G_O(v_O)hc/kT_V}$$ (9) $$R(T_R) = \left[\frac{K^{\dagger} + 1}{Q_{ROT}} e^{-(K^{\dagger} + 1)(K^{\dagger} + 2)\theta/T_R} + \frac{K'}{Q_{ROT}} e^{-K^{\dagger}(K^{\dagger} - 1)\theta/T_R} \right]$$ (10) Thus, $$I_{K^{\dagger},K''} = \left[\frac{S(T_V)}{S(T_C)}\right] \left[\frac{R(T_R)}{R(T_C)}\right] \left[C_1S(T_C)R(T_C)\right] N_{N_2}$$ (11) where $S(T_C)$ and $R(T_C)$ are the functions defined in equations (9) and (10) evaluated at a known calibration temperature (room temperature). Typical values of the slope ratios $S(T_V)/S(T_C)$ and $R(T_R)/R(T_C)$ are shown graphically in Figs. 11 and 12. To determine the nitrogen number density from the measurement of a line intensity, a room temperature calibration must be performed to determine the factor $[C_1S(T_C)R(T_C)]$. The constant C_1 includes not only the quantities indicated by equation (8), but also the sensitivity of the measuring system. The vibrational and rotational temperatures are measured in the test gas and the slope ratios $S(T_V)/S(T_C)$ and $R(T_R)/R(T_C)$ are determined from Figs. 11 and 12 (perhaps re-drawn for a different line or band). The N_2 number density then is determined with the measured line intensity and equation (11). Additional details
of the procedures are given in the examples of Section IV. The N_2 number density also can be determined by measuring the intensity of a particular band. For a given band, equation (6) can be written as $$I_{V',V''} = \left[\frac{S(T_V)}{S(T_C)}\right] [C_2S(T_C)]N_{N_2}$$ (12) where $S(T_V)$ is given by equation (9). As with the line intensity method, a room temperature calibration of the band intensity must be performed to determine $[C_2S(T_C)]$ and the vibrational temperature in the gas must be measured so that the slope ratio $S(T_V)/S(T_C)$ can be obtained. The number density then can be calculated with the band intensity obtained from the test gas and equation (12). Finally, the number density can be determined by measuring the total intensity of the radiation emitted by the electron beam. However, there are certain difficulties associated with this measurement which do not exist with the others discussed. The total intensity of the N_2 radiation is obtained from equation (12) by summing over all values of both v^* and v^* . The intensity expression obtained can be written in the form $$I_{N_2}^{+} = \left[\sum_{v_o} \frac{f(v_o)e^{-G_o(v_o)hc/kTV}}{Q_{VIB}} \right] N_{N_2}$$ (13) where $I_{N_2}^{+}$ denotes the intensity of the N_2^+ emission and $f(v_0)$ is a function of the Franck-Condon factors and wave numbers of the bands. In addition to the radiation of the ${\rm N_2}^+$ system, the emission from the ${\rm N_2}$ second positive system also must be included when the total radiation from the beam is considered. While the N2+ radiation intensity could be corrected for a varying vibrational temperature, it is unclear how the intensity of the N2 system relative to that of the N2+ system changes with changing vibrational temperature. This may not be a particular difficulty, however, since the (0,0) band of the Not system is much more intense than any other band in the emission. Radiation from metastable electronic energy states also may be included in the total emissive intensity. The radiation from metastable states is responsible for the "afterglow" observed in flowing gases. Normally, calibration of the total intensity as a function of number density is performed with no gas flow and the calibration then is applied to determine the density in a flowing system. However, the radiation from metastable states included in the intensities of the static calibrations would be swept downstream by the gas flow and out of range of the detector, introducing errors in the density measurement. For nitrogen excited by an electron beam, no significant radiation from metastable states has been observed (see Section IV). For other gases, the possible existence of "afterglow" should be examined before the total radiation intensity is employed for density measurements. The method chosen for density measurement in any particular situation probably will depend most strongly on the type of spectroscopic equipment available. When there is no vibrational excitation, the total radiation intensity can be employed and a simple photomultiplier tube will suffice as a detector. With vibrational excitation, the total radiation intensity is unsuitable and either a band or line intensity must be used. Further, the vibrational temperature of the radiating species must be measured to obtain an accurate value of the density. Note from Fig. 11 that a 10% error in the band intensity results from ignoring the effects of vibrational excitation at a vibrational temperature of 1500°K. When there is vibrational excitation, the measurement of a band intensity is most readily accomplished with a photomultiplier fitted with an appropriate filter to pass radiation from only one band. #### IV. EXPERIMENTAL PROCEDURES #### A. ROTATIONAL TEMPERATURE The rotational temperature must be determined with a spectroscopic instrument with sufficient resolution to separate the rotational lines within a band of the emission. Since the (0,0) band is much more intense than the others, it is employed for rotational temperature measurements. A typical spectrogram obtained with a Baird three-meter grating spectrograph is shown in Fig. 13. This particular instrument has a 15,000 line inch grating with a linear dispersion of 5.6 angstroms per millimeter in the first order. With a 100 micron entrance slit width, the fine structure of the (0,0) band is just resolved. Various types of spectroscopic plates were examined for use with the Baird spectrograph and Kodak type 103a-0 were found to require the shortest exposure time. With the electron beam passing through air at a pressure of 200 μ Hg at room temperature, an exposure time of 20 minutes was required to obtain a moderate photographic density on the plates. The intensities of the rotational lines are determined with a recording micro-densitometer. A typical trace from the densitometer for the (0,0) band is shown in Fig. 14. As an example of rotational temperature determination, the analysis of the trace shown in Fig. 14 will be discussed. The first step in the analysis is to determine the relationship between relative intensity and photographic density for the plate emulsion. Various standard calibration techniques are available. In this case, the relative intensity of a line from a standard source is assumed equal to the exposure time. The intensity calibration is obtained by plotting exposure time against the densitometer reading as shown in Fig. 15. The scatter of data points evident in Fig. 15 results primarily from the grainy nature of the 103a-0 emulsion. The densitometer readings obtained for each line from the trace of Fig. 14 are tabulated below. TABLE 1 TYPICAL LINE INTENSITIES FOR N2+(0,0) BAND | Κ* | Densitometer
Reading | I/I _o | $Log_{lo}[(G)(v^4/v_0^4)K^{\bullet}]$ | $Log_{10}[I/I_0^1/(G)(v^4/v_0^4)K^*]$ | |------------------|-------------------------|------------------|---------------------------------------|---------------------------------------| | 3 | 62 | 2.70 | 0.471 | 040 | | l_{\downarrow} | 79 | 1.80 | 0.597 | 041 | | 5 | 39 | 3.73 | 0.695 | 123 | | 6 | 73 | 2.13 | o .77 5 | 146 | | 7 | 31 | 4.25 | 0.842 | 214 | | 8 | 70 | 2.30 | 0.901 | 238 | | 9 | 29 | 4.50 | 0.954 | 301. | | 10 | 70 | 2.30 | 1.002 | 3 39 | | 11 | 33 | 4.10 | 1.01114 | 1431 | | 1.2 | 76 | 1.96 | 1.083 | 490 | | 13 | 42 | 3.57 | 1.120 | 567 | | 714 | 81 | 1.69 | 1.153 | 623 | | 15 | 55 | 2.98 | 1.185 | 711 | The relative intensities corresponding to the densitometer readings are obtained from the intensity calibration, Fig. 15. The values of $\log_{10}[\text{Gv}^4/\nu_0^4]$ are determined from Table 3 for an estimated temperature of 400°K and $\log_{10}[\text{K}^*\text{G}\text{v}^4/\nu_0^4]$ is calculated for each line. Now, because of the homonuclear structure of the N_2^+ molecule, lines with odd values of K* appear with intensities which are twice those of the lines with even K* values. Hence, the intensities of lines with even K* values were doubled before calculating $\log_{10}\left[\frac{I_{/}I_{0}}{K^{1}G\nu^{4}/\nu_{0}^{4}}\right]$. The rotational tempera- ture is determined by plotting this intensity function against $K^{\bullet}(K^{\bullet}+1)$ as shown in Fig. 16. The slope of the straight line in Fig. 16 yields a temperature of 418°K. Since this temperature is slightly different from the assumed value of 400° K, new values of $\log_{10}[K^{\bullet}Gv^{4}/v_{o}^{4}]$ could be obtained from Table 3 and the temperature re-determined by iteration. In the present case, the correction in the assumed temperature will not alter the final result. Detailed experimental studies reported in Refs. 3 and $\frac{1}{4}$ substantiate the validity of the above procedures. Considering the possibility for systematic photometric errors, the accuracy of the rotational temperature is judged to be \pm 3%. #### B. VIBRATIONAL TEMPERATURE As discussed in Section III, the vibrational temperature of the N_2 molecules is determined by measuring the intensity of various bands in the emission. For this purpose, a spectroscopic device which separates the bands must be employed. In these studies, a Bausch and Lomb $f_{\rm c}/5$ quartz prism spectrograph was used. A typical spectrogram obtained with this instrument is shown in Fig. 17 where only radiation from the N_2^+ first negative and N_2 second positive systems is evident. Note in particular the absence of any radiation from metastable energy states or species other than N_2 . Kodak type 103a-F spectroscopic plates give optimum results with the Bausch and Lomb spectrograph at exposure times equal to 3.5 minutes for an air pressure of 200 μ Hg at room temperature. A typical densitometer trace for the (0,2) band of the N₂^T emission is shown in Fig. 18. Calibration data relating the relative intensity to photographic density must be placed on the plate as discussed in the previous section. The band intensity is determined by numerically integrating with wavenumber the intensity values obtained from the densitometer readings and the intensity calibration. This integration procedure is conducted for all bands with suitable intensities. Since many bands are present in the spectrum, the vibrational temperature can be determined separately from many band intensity ratios and the curves of Fig. 10. A practical difficulty which exists, however, is the determination of the wavelength dependence of the emulsion sensitivity. In order to compare the intensities of bands in different spectral regions, the change in the relative sensitivity of the emulsion over the wavelength range must be determined. This requires a light source with a radiation output calibrated as a function of wavelength and very careful experimental procedures. The wavelength sensitivity calibration can be avoided, however, by comparing the intensities of bands only within a given band progression. That is, compare the intensities
of the (0,2), (1,3) and (2,4) bands or those of the (0,1), (1,2), and (2,3) bands. Since bands of a progression are separated by only approximately 60 Å, the neglect of the change of emulsion sensitivity over the length of a progression will not introduce sericus errors. As an example of vibrational temperature determination, various band intensity ratios and the corresponding vibrational temperatures are tabulated below. The tabulated data were obtained with an electron beam and an arc-heated wind tunnel operating with air as the effluent and are reproduced below from Table 2 of Ref. 4. The band intensities were determined by integration as discussed above. TABLE 2 N₂ VIBRATIONAL TEMPERATURES DETERMINED WITH AN ELECTRON BEAM | Distance from Tunnel & Transverse to Flow in Inches | I ₀₁ /I ₁₂ | I ₁₂ /I ₂₃ | I _{oi} /I ₂₃ | Ave. | |---|----------------------------------|----------------------------------|----------------------------------|------| | -1.0 | 2350 | 2820 | 2600 | 2590 | | 50 | 2720 | 2700 | 2700 | 2706 | | + .25 | 3000 | 2550 | 2800 | 2783 | | + .50 | 3150 | 2230 | 2430 | 2603 | | + .75 | 2420 | 2250 | 2320 | 2330 | | +1.0 | 2000 | 1850 | 1900 | 1916 | The obvious source of error in vibrational temperature measurements is inaccuracy in the various values for the Franck-Condon factors employed in the band intensity ratio expression. These Franck-Condon factors probably are not known to better than 5-10%. Further, the method of data reduction can introduce sizable errors. Spectral regions of a band away from the band head (Fig. 18) contribute a sizable amount to the intensity. However, the inherent grainy nature of the photographic emulsion is most noticeable with low intensities and causes errors in the contributions of the weater portions of the band. Considering the various sources of error, the vibrational temperature accuracy by this method is probably no better than ± 15%. The scatter of the temperatures in Table 2 is approximately ± 5% around the average value for each row. Photographic procedures certainly are not the most convenient for vibrational temperature measurements. Most scanning monochromaters have sufficient resolution to separate the band structure and direct intensity values can be obtained from a photomultiplier attached to the monochrometer. In this case, only the spectral response of the photomultiplier need be determined to obtain accurate data. A further simplification in the detection system can be achieved by simply employing two or more photomultipliers fitted with narrow bandpass filters so that each photomultiplier "sees" radiation from only one band. Calibrations of the relative sensitivities of the photomultipliers will yield corrected band intensities for use with Fig. 10. A vibrational temperature accuracy of \pm 5% should be possible with more direct measuring techniques. #### C. NUMBER DENSITY As discussed in Section III-E, the $\rm N_2$ number density may be determined in a variety of ways. The validity of all of the methods depends upon the linearity of the variation of the measured intensity with $\rm N_2$ number density. Nonlinearity of the variation results principally from collision quenching of the excited nitrogen ions. The amount of quenching depends upon the concentration of quenching particles and the collision cross section for the interaction between the quenching particle and the excited ion. Since the amount of quenching depends upon the concentrations of the quenching particles, it would be extremely difficult to apply a non-linear room temperature calibration in an effluent where the detailed chemical composition is unknown. In Ref. 4, detailed experimental studies were conduted to determine the effects of quenching on the various density measurements. It was found that for the maximum densities examined (corresponding to a pressure of 400 μ Hg at room temperature), quenching was evident in neither rotational line nor vibrational band intensities. The variation of the intensity with N₂ number density of the K* = 11 line in the N₂+ (0,0) band reproduced from Ref. 4 is shown in Fig. 19. The slope of this curve is equal to the factor $[C_1S(T_C)R(T_C)]$ in equation (11). To increase the accuracy of the line intensity determination, the quantity $\log_{10}[(I/I_O)/K^*G\nu^4/\nu_O^4]$ was plotted versus $K^*(K^*+1)$ and the smoothed value of the logarithm was used to calculate the line strength. To determine the N₂ density from the calibration (Fig. 19) and the smoothed line strength obtained from the test condition, both the rotational and vibrational temperatures must be measured so that the slope correction factors can be determined (Fig. 11 and 12). With the slope ratios $S(T_V)/S(T_C)$ and $R(T_R)/R(T_C)$ and the room temperature slope $[C_1S(T_C)R(T_C)]$, the variation of I_{K^*,K^*} versus N_{N_2} corrected for vibrational and rotational temperatures different from those of the calibration can be obtained. A sample calibration of the intensity of the $N_2^+(0,0)$ band is shown in Fig. 20. In this case, a 1P28 photomultiplier tube fitted with a Farrand interference filter was used. The filter allowed radiation only from the (0,0) band to strike the photocathode. The slope of the photomultiplier output versus N_2 number density constitutes the factor $C_2S(T_C)$ in equation (12). Again, this calibration curve must be corrected for a vibrational temperature (but not rotational temperature) difference between the test and calibration conditions. This is accomplished by measuring the vibrational temperature and referring to Fig. 11. Note that this technique is particularly simple when there is no vibrational excitation in the test condition so that the slope ratio $S(T_V)/S(T_C)$ is unity. When there is vibrational excitation of the test gas, the vibrational temperature must be determined. The band intensities employed for vibrational temperature measurement also can be utilized for density measurement. Typical calibrations of the N_2^+ (0,2) and (1,2) band intensities obtained with the Bausch and Lomb spectrograph are shown in Fig. 21. The procedure for density measurement with this type of calibration is identical to that discussed above for the photomultiplier application. The common cause of error in density measurement with an electron beam is due to a slight change in the alignment of the beam and optical system between calibration and test exposures. Particular care must be exercised to assure that this does not occur so that the sensitivity of the detecting system remains unchanged. This is particularly bothersome when testing with an arc-heated wind tunnel since small changes in the strength of the ambient magnetic field can cause deflections of the beam and subsequent misalignment of the beam-optical system. It should be noted that these sensitivity changes will not affect the temperature measurements, since only relative intensities are employed rather than the "absolute" intensities of the density measurements. #### V. SUMMARY AND CONCLUSION An electron beam device suitable for use with low density non-radiating flows has been described. The beam can be utilized for direct measurements of the rotational and vibrational temperatures and concentrations of nitrogen molecules present in a high speed air flow. The technique can be applied regardless of the gasdynamic nature of the flow (i.e., in boundary layers, shock layers, wakes, etc.). The beam causes no noticeable disturbance of the test gas and in this regard has proven to be a powerful flow diagnostic device. The electron beam system presently in use at The Ohio State University has been described and certain design criteria have been specified. A wide variety of optical equipment can be employed for the measurements and experimental data obtained with various spectrographs and photomultipliers has been presented for illustrative purposes. The theoretical analyses required for interpretation of the beam data have been summarized. The pertinent quantities utilized in data reduction procedures have been presented in tabular form and sample calculations have been discussed. The electron beam technique should be examined further to determine the maximum flow density which can be examined before collision quenching of the radiation becomes an important factor. Application of the technique to species other than nitrogen also should be investigated. #### REFERENCES - 1. Fishburne, E. S. and Petrie, S. L.; "Spectrographic Analysis of Plesma Flows;" Dept. of Aero-Astro. Engr., The Ohio State University; ASD Tech. Documentary Rept. ASD-TDR-63-98, 1963. - 2. Gadamer, f. O.; "Application of an Electron Gun to Density Measurements in Rarefied Gas Flow;" UTIA Bulletin and Progress Report, 1960. - 3. Muntz, E. P.; "Measurement of Rotational Temperature, Vibrational Temperature, and Molecule Concentration in Non-Radiating Flows of Low Density Nitrogen;" University of Toronto Inst. of Aerophysics Rept. 71, April, 1961. - 4. Petrie, S. L., Pierce, G. A., and Fishburne, E. S.; "Analysis of the Thermo-Chemical State of an Expanded Air Plasma;" Dept. of Acro-Astro. Engr., The Ohio State University; ASD Tech. Documentary Rept. AFFDL-TR-64-191, December, 1964. - 5. MacArthur, R. C., et al; "Flow Visualization and Quantitative Gas Density Measurements in Rarefied Gas Flows;" ASD-TDR-62-793, December, 1962. - 6. Laurmann, J. E. (Editor;) Rarefied Gas Dynamics, Vol. II; Academic Press, New York, 1903. - 7. Herzberg, G.; Spectra of Diatomic Molecules; D. van Nostrand and Co., New York, 1950. | K†
T _{ROE} | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | |------------------------|-------------------|-------------|----------------|-------|-------------|--------------|-------|-------|--------|-------| | 75 | 01.8 | .006 | .037 | .078 | .12h | .175 | .231 | •550 | .351 | ,կլի | | 100 | ~. 016 | 003 | .016 | .OHI | .069 | .107 |
.136 | .175 | .217 | . 260 | | 3.25 | 03.5 | 005 | .007 | .023 | .043 | . 064 | .089 | .116 | .146 | .177 | | 150 | 01.3 | 006 | .003 | .014 | .058 | · 044 | -062 | •085 | . 3.04 | .1.28 | | 175 | 011 | 007 | 0 | .009 | .019 | .032 | .045 | .061 | .078 | .097 | | 200 | Oll | 006 | 001 | .006 | $.01^{j_1}$ | .024 | .035 | .047 | .001 | .076 | | 225 | 010 | 006 | 002 | •00/+ | .011 | .019 | •0\$8 | .038 | .050 | •061 | | 250 | ~. 009 | 006 | 002 | .003 | .009 | .015 | •055 | •031 | .041 | .051 | | 300 | 007 | 005 | 003 | .001 | .006 | .010 | .01.6 | .022 | .030 | .037 | | 373 | - .006 | 004 | ~. 003 | 0 | .003 | .007 | .011 | .015 | .021 | .026 | | 1100 | -,006 | 00l+ | 003 | 0 | ,003 | ,006 | ,009 | •01/1 | .019 | •05/1 | | 450 | 005 | 003 | 002 | 0 | .003 | .005 | .008 | .015 | .016 | .020 | | 500 | -,005 | 003 | 002 | 0 | .002 | .005 | .007 | .010 | ·OJ/H | .017 | | 550 | QQl+ | 003 | 002 | 0 | .005 | •00h | .006 | •009 | .012 | •01.6 | | 600 | 004 | 003 | ~ . 00S | 0 | .002 | •00h | .006 | .009 | .01.2 | ·01/i | | 700 | 003 | 002 | 001 | 0 | .002 | .003 | .005 | .007 | .01.0 | •01.5 | | 008 | 003 | 002 | 001. | 0 | .002 | .003 | .005 | .007 | .009 | •015 | | 900 | 003 | 002 | 001. | 0 | .002 | .003 | •005 | •006 | .009 | ·orr | | 7.000 | 002 | 001. | 001. | .001. | .002 | .003 | *00f | •006 | ,009 | •01.0 | | v"/v" | 0 | 1 | 5 | 3 | žį. | |-----------------------|---------------------------------------|--------------------------------------|--------------------------------------|------------------------------|----------------------| | 0
1
2
3
4 | 391.4
4278
4709
5228
5865 | 3582
3884
4236
4652
5149 | 3308
3564
3858
4199
4600 | 3299
3549
3835
4167 | 3293
3538
3818 | TABLE 5 RELATIVE VIBRATICNAL TRANSITION PROBABILITIES $$p(\mathbf{v}^{\dagger}, \mathbf{v}^{\prime\prime}) = R_{e}^{\otimes}q(\mathbf{v}^{\dagger}, \mathbf{v}^{\prime\prime})$$ FOR TRANSITION $N_2^+B^2\Sigma \to N_2^+X^2\Sigma$ (Reproduced from Ref. 3) | v^*/v^{tt} | O | Ţ | 3 | 3 | 14 | | | | |--|------|--|---------------------------------------|------|-----|--|--|--| | Mary to the second state of the second secon | | - Planting and the Control of Co | · · · · · · · · · · · · · · · · · · · | | | | | | | () | •54 | •23 | .07 | .02 | | | | | | 1. | .21 | .21 | .27 | . 26 | .05 | | | | | 2 | · 01 | .29 | ω | .23 | .17 | | | | TABLE 6 ${\it FRANCK-CONDON FACTORS FOR TRANSITION N_2^+B^2\Sigma \to N_2^+X^2\Sigma}$ (Reproduced from Ref. 3) | v* \v" | 0 | 1 | 2 | |--------|------------------|-------|-------------| | 0 | .65 | . 26 | .07.1 | | ,1. | .30 | .22 | , 29 | | 2 | .047 | • 1+J | . એક | | 3 | .00 ₃ | .11 | .41 | TABLE 7 ${\rm FRANCK-CONDON~FACTORS~FOR~TRANSITION~N_2X^1\Sigma \to N_2^+B^2\Sigma}$ (Reproduced from Ref. 3) | Ber gapti (Constitution Label Constitution (Constitution Constitution | | | | | | | | | | | |---
--|--|--|--|--|--|--|--|--|--| | $v^{*} V_{O}$ | Ō | ,L | 2 | | | | | | | | | THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN | The same of sa | The same of sa | A SALAN CONTRACTOR OF THE PROPERTY PROP | | | | | | | | | C | .90 | • C8;. | و00. | | | | | | | | | 1. | •09 ₅ | $\cdot 7^{\eta_1}$ | . 14 | | | | | | | | | 2 | .001 | .1.7 | .63 | | | | | | | | RELATIVE POPULATIONS OF Next VIBRATIONAL ENERGY LEVELS, $e^{-G_0(v_0)h_0}$, kTV TABLE 8 | | हाक् | 00.1 | 를
근 | 년
전 | 10.4 | | | 1.23 | 다.
5 | \%
∴ | 7.42 | ू
न | 1.56 | 1.63 | 1.70 | 7.1 | क्ते
. तं | 는.
당 | 8 | 5.5 | |---|--------------------------|----------------|---------|--------|--------------|----------------|-----------------|---------------|-----------------------|---------------|-------|------------------|---|--|------------------|----------------|----------------|----------------|-----------|-----------| | | Ú. | | | | | | | | | | | | | | | | 20T> | < <u>10</u> 12 | 100 | <u>\$</u> | | | 6 | | | | | | | | | | | | | <10-5 | <101> | 2 <u>-07</u> > | 130. | ,
000 | .002 | ္
် | | • | හ | | | | | | | | | | | | <301×3 | <10-3 | 100 | 000 . | 8 | <u> </u> | ,
(200 | 990. | | | £ | <10-4 | <10. | <10-4 | <101> | <10- | <10-4 | <10. | 0_0EV | <10-3 | <10-3 | <10-3 | <10-3 | 200* | 200 | ₽Ġ. | , 005
7 | ,
500, | 600. | 16. | | | 9 | <10T> | <107> | <10-4 | <10_4 | <10-¢ | <10-4 | <10_3 | ~10 <u>~</u> | <10-3 | 2017 | .001 | .002 | 3 | 900 | ું.
જુ | .010 | .013 | .017 | 080 | | | ć | <10T> | <101> | <101> | <10 <u>1</u> | <10-4 | \$10-g | <10-3 | <10-3 | S
20
20 | 603 | 80 | 8 | 000. | Eto. | .017 | - 025 | ·왕· | 032 | .038 | | J | 草 | <10.74 | <1C-4 | <10° | 4-01V | ^10 <u>1</u> 0 | <10 <u>-</u> % | .001 | .003 | 100 | 88 | 210. | 720, | . 023 | ુ
ઉછે: | .037 | 19. | .053 | 683 | .072 | | | ന | <10-4 | <10-4 | <10-4 | <10_3 | <10_3 | | | .012 | 670. | .027 | 980. | いさ: | . C58 | LTO. | წე | %
% | 011. | ,12t. | .137 | | | < | < <u>10-</u> 2 | <101> | 19 | 1,09 | 015 | 580. | 090. | .051 | 8. | 83. | ,108 | .128 | 0
1
1
1
8 | 150 | 881. | 39 | ,228 | 745. | .85 | | | М | :00J | ाः
। | .035 | 88 | 107 | (~
그 | نا
ش
اب | , 22.27
7.25.57 | 252 | K | .327 | .356 | 48. | الد
وي
الد | ££33 | =#
u^
=# | | 다.
당시 | SEC. | | | ٥ | 1-1 | ,-I | r=1 | r-/l | r-1 | - -I | e-1 | гH | ~ I | гH | , - 1 | r-1 | r-1 | ~ −ŧ | r 1 | r-i | r1 | 1 | сH | | | $z_{\rm y}(x)/v_{\rm o}$ | 500 | 750 | 1000 | 1250 | 1500
0000 | 1750 | 000 | 0
0
0
0
0 | 2500 | ±2750 | ं
ਨੇ
ਨੇ | ⊃
68
88
88
88
88
88
88
88
88
88
88
88
88 | 0
0
10
10
10
10
10
10
10
10
10
10
10
10 | 3750 | 0001 | -1
0
0 | 4500 | 4750 | 5000 | FIGURE I ELECTRON BEAM SCHEMATIC FIGURE 2 ELECTRON BEAM VACUUM SYSTEM PERFORMANCE FIGURE 3 ELECTRON GUN SCHEMATIC FIGURE 4 GUN MOUNT DETAILS FIGURE 5 ELECTRON BEAM GENERATORS FIGURE 6 BEAM-WIND TUNNEL ASSEMBLY FIGURE 7 PARTIAL ENERGY LEVEL DIAGRAM FOR N₂ AND N_2^+ FIGURE 9 ISO-INTENSITY PLOT FOR (0,0) BAND OF N_2^{\dagger} FIRST NEGATIVE EMISSION; T_R versus K_1 FIGURE 10 BAND INTENSITY RATIOS FOR N_2^+ FIRST NEGATIVE EMISSION SYSTEM FIGURE II N_2^+ (0,2) BAND INTENSITY SLOPE RATIO AS A FUNCTION OF VIBRATIONAL TEMPERATURE FIGURE 12 K'* 13 LINE INTENSITY SLOPE RATIO AS A FUNCTION OF ROTATIONAL TEMPERATURE ## FIGURE 13 TYPICAL SPECTROGRAM FROM 3-METER GRATING SPECTROGRAPH DENSITOMETER RECORDING FOR Nº (0,0) BAND FIGURE 15 TYPICAL EMULSION CALIBRATION FIGURE 16 LINE-SLOPE PLOT FOR N2 (0,0) BAND
VIBRATIONAL TEMPERATURE = 2700 °K FIGURE 17 TYPICAL SPECTROGRAMS FROM f/5 PRISM SPECTROGRAPH FIGURE 18 DENSITOMETER TRACE OF N₂+ (0,2) BAND FIGURE 19 K'= II LINE INTENSITY IN N₂ (0,0) BAND DETERMINED WITH A SPECTROGRAPH AS A FUNCTION OF N₂ NUMBER DENSITY AT ROOM TEMPERATURE FIGURE 20 N2 (0,0) BAND INTENSITY DETERMINED WITH A PHOTOMULTIPLIER AS A FUNCTION OF N2 NUMBER DENSITY AT ROOM TEMPERATURE FIGURE 21 N_2^{+} (0,2) AND (1,2) BAND INTENSITIES DETERMINED WITH A PRISM SPECTROGRAPH AS A FUNCTION OF N_2 NUMBER DENSITY AT ROOM TEMPERATURE ## Unclassified Security Classification | (Security classification of title, budy of abstract and index | ting amplation must be a | ncered when | the overall report in cleanified) | | | | |---|---|--------------------------------------|--|--|--|--| | The Ohio State University Research Foundation 1314 Kinnear Road, Columbus, Ohio | | 26 REPORT SECURITY G LASSIFICATION | | | | | | | | Unclassified | | | | | | | | 25 GROUP | | | | | | 3 REPORT TITLE | ti di Primi i provincia prima arrando. Al evis, legistato de accionesta e un como como como como como como como com | | المنافضة العظمية مثار المنس ومثال التأكير والمنافضة والمنافضة والمنافضة والمنافضة والمنافضة والمنافضة والمنافضة
- المنافضة العظمية والمنافضة والمنافضة والمنافضة والمنافضة والمنافضة والمنافضة والمنافضة والمنافضة والمنافضة وا | | | | | An Electron Beam Device for Real C | Gas Flow Diag | nostics | | | | | | 4 DESCRIPTIVE NOTES (Type of report and inclusive dates) Interim Report | e (Mariana e erru. Cad er ennadarien en en erru | | adiach de 1900 (an 1900) an 1900 (actual an 1900) | | | | | 5 AUTHOR(S) (Last name. litet name, initial) | | | The state of s | | | | | Petrie, S.L. | | | | | | | | | | | | | | | | 6. REPORT DATE | 7. TOTAL NO. OF | 70 TOTAL NO. OF PAGES TO NO. OF REFS | | | | | | June 1965 | 50 | | 7 | | | | | SA. CONTRACT OR GRANT NO. | 90. ORIGINATOR'S REPORT NUMBER(S) | | | | | | | AF 33(657) - 11060 | Technical Report No. 1 | | | | | | | 6 PROJECT NO.
7065 | | _ | | | | | | ¢ 005 | | | Control of the Control of the wild become still the Control of | | | | | V | 95. OTHER REPORT NO(5) (Any other numbers that may be sestimed this report) | | | | | | | d | ARL 65-122 | | | | | | | 10 AVAILABILITY/LIMITATION NOTICES | | And helperined with the same | | | | | | Qualified requesters may obtain th | is report from | DDC. | | | | | | Copies available from OTS, | | | | | | | | 11. SUPPLEMENTARY NOTES | 12. sponsoning military activity Aerospace Research Laboratories | | | | | | | | | | | | | | | | Office of Aerospace Research, USAF | | | | | | | Wright-Patterson AFB, Ohio | | | | | | | | | | | | | | | | An electron beam device suitab | | | | | | | | flows is described. It is shown that | | | | | | | | electron beam can be employed to d | | | • | | | | | vibrational temperature and concent | | | 9 | | | | | speed air flow. The theoretical ana | - <i>-</i> | | - | | | | | the data obtained with an electron be | - | | 2 × 1- | | | | | cation of the technique are given. | Jertain design | criteria | for electron | | | | | beam generators are discussed. | | | | | | | <u>Unclassified</u> Security Classification | 14 MANNE | LINKA | | LINK Ð | | LINKC | | |------------------|-------|-----|--------|----|-------|----| | KEY WOADS | | W 1 | ROLL | wt | HOLE | WT | | | | | | | | | | | | • | | | 1 | | | Electron beams | | İ | | | | | | Flow diagnostics | | ļ | | | İ | | | G | - | | | | 1 | | | | | | | | | | | | ĺ | | | | | | | | | | | | | | | | | ĺ | | | | | | | | | | | | | | i | i | | | | | | | | | | | | | | | INSTRUCTIONS | | | | | | | - 1. ORIGINATING ACTIVITY; Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report. - 2s. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Date" is included. Marking is to be in accordance with appropriate security regulations. - 25. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized. - 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a menningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately fellowing the title. - 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting nerted is covered. - 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter tast name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement. - 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication. - 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information. - 7b. NUMBER OF REFERENCES. Enter the total number of references cited in the report. - 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written. - 8b, &c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc. - 9s. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report. - 9b. OTHER REPORT NUMBER(S). If the report hus been assigned any other report numbers (either by the originator or by the open-or), also enter this number(s). - 10. AVAIL ABILITY LIMITATION NOTICES. Enter any limitations on Latiner dissemination of the report, other than those imposed by security classification, using standard statements such as: - (1) "Qualified requesters may obtain copies of this report from DDC." - (2) "Foreign announcement and dissemination of this report by DDC is not authorized." - (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through - (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through - (5) "All distribution of this report is controlled. Qualified DDC users shall request through If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known - 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes. - 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (pairing for) the research and development. Include address. - 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached. It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS). (S). (C). or (U) There is no limitation on the length of the
abstract. However, the suggested length is from 150 to 225 words 14 KEY WORDS: Key words are technically menningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project cade name, geographic location, may be used as key words but will be followed by an indication of technical context. The acceptance of tasks, rates and we price is optional.